Hydro-boost vs. vacuum boost - Page 3 - Ford Truck Enthusiasts Forums

6.7L Power Stroke Diesel 2011-current Ford Powerstroke 6.7 L turbo diesel engine
Sponsored by:
Sponsored by:

Hydro-boost vs. vacuum boost

Thread Tools Search this Thread
Old 04-07-2012, 05:58 PM
Hdslider's Avatar
Hdslider Hdslider is offline
Join Date: Aug 2011
Location: Roll Tide, Roll
Posts: 4,637
Hdslider has a superb reputationHdslider has a superb reputationHdslider has a superb reputationHdslider has a superb reputationHdslider has a superb reputationHdslider has a superb reputationHdslider has a superb reputationHdslider has a superb reputationHdslider has a superb reputationHdslider has a superb reputationHdslider has a superb reputation
Originally Posted by macguy View Post
It would also appear that vacuum boost working off motor would cause less acceleration and get lower mpg. I love to hear fords reason, though they seem to be quiet about this change.
Why would you think that? it only use vacuum when brakes applied. So it cannot affect acceleration because your foot is off brake, so can't happen. And certaintly cannot affect mpg either.
Reply With Quote
Old 04-07-2012, 06:37 PM
fmtrvt fmtrvt is offline
Elder User
Join Date: Oct 2001
Location: Jersey Shore Not Seaside!
Posts: 544
fmtrvt is a name known to allfmtrvt is a name known to allfmtrvt is a name known to allfmtrvt is a name known to allfmtrvt is a name known to allfmtrvt is a name known to all
That sales article is just that, a sales article and should not be considered a technical discussion.

The type of actuation system boost is chosen for many different reasons depending on the particular situation. Sometimes cost, sometimes need, sometimes the complexity of integrating it into the powerplant accessories or under hood areas. It's never a conspiracy issue.

I posted this over at The Diesel Stop earlier last month in response to a question about a comment I made that I would always choose a hydroboost. So I'll confuse you guys too since I've never proofed it.


The way I write and how tired I am right now means this is going to be confusing …..

I’ve probably pushed a brake pedal 1000’s of times in a failed system mode, where either one of the two circuits of a brake hydraulic system have been failed or a booster has been shut off or vented. So I know how far and hard you have to push a pedal to the floor in order to still be able to stop under system failure. Most consumers do not and it’s not unusual to have someone who failed one of the hydraulic circuits to state they have lost all of their braking ability. They didn’t, they just had to push closer to the floor. I’ve seen it in accident cases and I’ve seen it on this forum. So from a vehicle ergonomics engineer’s position, pedal travel is of great concern.

Secondarily, I have no idea why Ford made the change for the ’12 MY, and could have been a multitude of reasons unrelated to what I’m discussing. Also the data I’m presenting is not from the ’12 SDs. We supplied friction materials to all the big three and multiple Asian and European companies. So I’m using real data as an illustration I was using as a teaching example.

Before the start of any test I would have the test drivers generate data from the vehicle so I could go back and see if the vehicle was setup right and had all the air out of the brake system. It fingerprinted the vehicle so if questions arose down the road if something other then the friction material was the reason for a poor performing test I could eliminate variables. These graphs are not industry standard, were laid out for my use, and even would give my engineers a headache sometimes. But it was my fingerprint. The data comes from having a pedal force sensor mounted in place of the rubber pad on the brake pedal, a hydraulic pressure sensor in each of the two hydraulic circuits (front and rear), and a linear transducer mounted to the brake pedal lever.

The only difference in these two vehicles is the actuation system, the booster and brake pedal leverage. The data is generated first with the vehicle running after a goose up to 3,000 rpm (highest vacuum on the downside of that goose) and then with the engine off after hitting the pedal 6 times to exhaust all vacuum/pressure in the booster or accumulator. I usually present the data a six graphs on one page, the only difference here is I split the graphs up so one page demonstrates the normal operation of both vehicles and the second under failure mode circumstances. The three graphs in a row are all the same data; just the graphs are rearranged in the presentation so it’s easier for me to understand what I am looking for. Graph curves look different depending on the presentation. As I said, other people look at it and go “Huh?”. But you’re stuck with me and I’ll bounce from one graph to another which is going to make your head spin. I’ll be using the left side graphs (pedal effort) for this discussion.

The first page shows the differences in boosted operation between the vehicles. But first let me talk about booster knees or runout. At some point in any booster operation you run out of assist, where the rest of the hydraulic pressure is attained only by direct manual force, just like if there was no booster. Depending on the design of a vacuum booster, it can be a hard or soft transition and in the case of this vacuum booster it’s a soft knee that occurs at about 60lbs PE. The hydroboosted vehicle shows a hard knee, more at 70lbs PE. Graph 1 may be better to show this

Most of our normal brake activity is done at 250-500psi, and for that the pedal efforts are pretty similar, and so is the pedal travel. But after that the hydroboost system generates more assist, or another way it takes less PE to generate hyd psi. A 13k Superduty requires about 1400-1500 hyd psi to generate a wheel skid. With a truck that has the illustrated vacuum booster setup, that is going to require the entire 150lb PE that NHTSA allows. The hydroboosted truck is only requiring 65lbs PE to do the same. And at that hydraulic pressure both require about the same pedal travel, 4.5”. A truck at 10k may only require about 900-1000 hyd psi so the PEs at that point are closer.

But lets say I was dumb enough to hitch up a 12k trailer with non-performing brakes on the back. I’m way over exceeding the design capability of the truck brakes. If the truck is relatively light, the tires may break free and just skid. But if the truck load is sufficient to keep the tires from skidding, I could really need as much brake torque as I can get. And if I’m driving in the mountains, I could get into a situation of ‘hard’ brake fade, where the heat is causing a loss of friction, but not excessive travel. For that last Hair Mary attempt at stopping, I need all of the hydraulic pressure I can get. The hydroboost system let’s me generate 500 hyd psi more at 150lbs PE then the vacuum boost system would. And at a true ‘Hail Mary’ stop, it’s been known for a driver to push 200-250lbs PE. I got the data!

The negative to that situation with the hydroboost though is pedal travel, as at 150lbs PE the travel will be 1.5” longer. And most people give up way before 6” of pedal travel. And if people are going to give up at 5” of travel thinking they are pedal to floor, you might be better off with the vacuum booster. As I said, I know how far I can go with the brake pedal and I would rather have the extra hydraulic pressure I know I can get.

Now lets look at the situation where a booster fails in operation. In reality, a rare occurrence. And the same advantages / disadvantages exist as with the systems under full operation.

If you are in a vacuum boosted vehicle with the motor off and press on the brake pedal a few times to exhaust the vacuum reserve you know you have a low travel hard pedal. The graph shows that. And with a failed vacuum booster we can only generate about 350psi. Good enough for a typical deceleration rate stop, not so good if it’s a panic stop. Pedal travel is only about 2.25” at 150lb PE (remember NHTSA limit), so there is plenty more pedal travel if someone is interested in stopping the vehicle at a higher decel rate rather then worrying that the NHTSA police are not going to hassle you for pushing too hard on the brake.

Here the hydrobooster again has an advantage in being able to generate a higher hyd psi at 150lbs PE, with the same situation of having a longer pedal travel. The reason for the higher pressure and longer travel is the pedal arms have different leverages between a hydroboost and vacuum boost system. The attachment point for the pushrod that goes out the firewall is altered. And why it’s not an easy task to just flip between the two boosters, if adding a hydroboost system in place of a vacuum boost was easy!

Again for me knowing how far I can push the brake pedal, the double the travel of the hydroboosted system is worth it to me to get another 100 hyd psi in that failure mode. The consumer may be more prone to give up with the “lost all my braking” viewpoint.

Over the last 30 years this comparison has been pretty normal with vehicles where the actuation system has been variable between the two brake assist systems. But also keep in mind this is not data from a 2012 Superduty, and all those relationships can change depending on the size, valving and pedal ratio of the actuation systems. Ford may have selected a vacuum system that is setup to be closer to the PE of a hydroboost system then I am demonstrating.

And depending on the friction level of the brake pads you put on a vehicle you can greatly change the PE required to stop depending on how the hydraulic skid points are located in relation to the booster knee. Past the knee requires a proportionally higher force. Higher friction can keep everything below the knee.

Reply With Quote
Old 04-08-2012, 08:44 AM
macguy macguy is offline
Senior User
Join Date: Feb 2012
Posts: 142
macguy is starting off with a positive reputation.
I like your explanation analysis. The one point you made where if you lost engine power clearly shows hydro boost as a safer system, In my case, I ordered my 2012 with the camper package as I plan on installing a camper which is top heavy. Thus in my opinion it should use the hydro-boost, and especially if the engine quits and I'm traveling down hill.
Reply With Quote
Old 04-08-2012, 12:42 PM
djousma djousma is offline
Posting Guru
Join Date: Mar 2005
Location: West Michigan
Posts: 1,948
djousma is a name known to alldjousma is a name known to alldjousma is a name known to alldjousma is a name known to alldjousma is a name known to alldjousma is a name known to all
I guess your only option is to buy a 2011 F350 then. What about the DRW? Still have hydroboost?
Reply With Quote
Old 04-08-2012, 12:55 PM
Tom's Avatar
Tom Tom is offline
Join Date: Aug 2003
Location: Braham, MN
Posts: 23,036
Tom has a superb reputationTom has a superb reputationTom has a superb reputationTom has a superb reputationTom has a superb reputationTom has a superb reputationTom has a superb reputationTom has a superb reputationTom has a superb reputationTom has a superb reputationTom has a superb reputation
Originally Posted by djousma View Post
I guess your only option is to buy a 2011 F350 then. What about the DRW? Still have hydroboost?
Reply With Quote
Old 04-08-2012, 02:26 PM
macguy macguy is offline
Senior User
Join Date: Feb 2012
Posts: 142
macguy is starting off with a positive reputation.
Or buy silverado or ram. Both there diesels come with hydro boost standard, and Chevy/GMC 3/4 and 1 ton gas come standard with hydro boost.
Reply With Quote
Old 04-22-2012, 01:28 PM
screwy's Avatar
screwy screwy is offline
Posting Guru
Join Date: Aug 2002
Location: Over Yonder, MN
Posts: 1,965
screwy has a good reputation on FTE.screwy has a good reputation on FTE.
When I was reading this thread a couple weeks ago I kept thinking I had read something about the brake pressure, but couldn't remember what it was.

Anyways, while paging through the owners manual I found this:

Brake assist
The brake assist system provides full braking force during panic braking
situations. It detects a rapid application of the brake pedal and uses the
ABS system to achieve maximum braking pressure. Once a panic brake
application is detected, the system will remain activated as long as the
brake pedal is pressed or ABS is engaged. The system is deactivated by
either releasing the brake pedal or coming to a complete stop. When the
system activates, noise from the ABS pump motor and brake pedal
pulsation may be observed; this is normal.

Sounds like it uses the ABS pump to boost brake pressures beyond normal pressures?

Having driven many Chevy Hydroboost systems from the 80's on up to about 2000, I can say I don't feel like I'm missing anything, now maybe the last 10 years has seen significant advancements, but I'm happy none the less.
Reply With Quote

Related Topics
Thread Thread Starter Forum Replies Last Post
Hydroboost breaking nonrev321 1980 - 1986 Bullnose F100, F150 & Larger F-Series Trucks 11 04-28-2016 05:45 AM
Hydro-Boost Re-man or OEM? scotttahoe 1999 - 2003 7.3L Power Stroke Diesel 5 03-11-2016 02:03 PM
Hydroboost parts question kevin316 1973 - 1979 F-100 & Larger F-Series Trucks 1 11-20-2015 12:11 AM
No hydro boost on 2016 f350? troverman 1999 to 2016 Super Duty 8 11-16-2015 08:25 PM
Hydro-Boost or no Hydro-Boost? eicht 1999 to 2016 Super Duty 12 05-09-2010 08:09 AM

Go Back   Ford Truck Enthusiasts Forums >

06, 4x4, 67, add, boost, brakes, f350, ford, hydro, locate, pump, trucks, vacum, vacuum, vs

Thread Tools Search this Thread
Search this Thread:

Advanced Search

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off

Forum Jump

All times are GMT -5. The time now is 05:24 AM.

We are a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for us to earn fees by linking to Amazon.com and affiliated sites.
  • Ask a Question
    Get answers from community experts
Question Title:
Your question will be posted in: