General NON-Automotive Conversation No Political, Sexual or Religious topics please.

dynamics

Thread Tools
 
Search this Thread
 
  #1  
Old 05-04-2008, 11:37 AM
captain p4's Avatar
captain p4
captain p4 is offline
Post Fiend
Thread Starter
Join Date: Jun 2004
Location: Joppa, Maryland
Posts: 8,147
Likes: 0
Received 1 Like on 1 Post
dynamics

Hello everyone,

having a little trouble with this problem and thought someone might be able to push me in the right direction...


"A rod of length L and mass m lies at rest on a horizontal sheet of ice. If the rod is given a kick at one end in a direction normal to it, find its center of rotation at that moment."

thanks for any ideas...
 
  #2  
Old 05-04-2008, 12:30 PM
fmc400's Avatar
fmc400
fmc400 is offline
MSEE
Join Date: Apr 2004
Location: Austin, TX
Posts: 10,386
Likes: 0
Received 22 Likes on 18 Posts
I seem to remember these kinds of problems when I took dynamics a long time ago and it seems like there is some kind of formula for moment-x and moment-y, or something like that. And I think that because the rod is on ice, they want you to assume the friction coefficients are zero, so the only force you have on the rod is the force of someone kicking it. I don't know what I did with my notes for that class, so that's about all the help I can give. Sorry!
 
  #3  
Old 05-04-2008, 03:45 PM
Snowbunny's Avatar
Snowbunny
Snowbunny is offline
Post Fiend
Join Date: Mar 2007
Location: The Great North~West!
Posts: 8,770
Likes: 0
Received 8 Likes on 4 Posts
Paul ~ I think it's asking for the "Moment of Inertia." If you kick the rod at the end at, perpendicular to it's length (normal) it will spin on it's axis through the center The ice does indeed let you know your coefficient of friction = zero.

And since you don't seem to have any dimensions, then it is simply a manipulation or proof of the Inertia formula,,, (I = Integral r^2 dm)

I = SUM m(sub i) r(sub i)^2
= (m)(1/2 L)^2 + (m)(1/2 L)^2
= 1/2 mL^2

Now, depending on what you've been doing in class, he may want you to integrate to find the Moment of Inertia~ If so, you'll need something more like this,,,

(I = Integral r^2 dm)

element's mass(dm)/element's length(dx)=rod's mass(M)/rod's length(L)
dm = M/L dx

and integrate from the end to end of the rod (from x=-L/2 to x = L/2) to include all the elements,,,

I = Integral of x^2(M/L) dx from x=-L/2 to x=+L/2
= M / 3L [x^3] from -L/2 to +L/2
= M / 3L [(L/2)^3 - (-L/2)^3]
= 1/12 ML^2

I would be more inclined to use this formula,,, It is for a thin rod, about the axis, through the center, perpendicular (normal) to length. That is pretty much what your original statement said.

Well,, that seems clear as mud!! Ha! Ha!! Hope it helps!!
 
  #4  
Old 05-04-2008, 11:15 PM
stu37d's Avatar
stu37d
stu37d is offline
Government Teat-sucker

Join Date: Oct 2003
Location: Virginia Beach
Posts: 9,748
Likes: 0
Received 1 Like on 1 Post
Lizzie. Snowbunny. My Dear.
How the heck is the young man supposed to learn anything if you give him all the answers???

And, By the way. Are you going to be able to help me with my Statistics class this fall?????Please,Please, PLEASE????
 
  #5  
Old 05-04-2008, 11:38 PM
Snowbunny's Avatar
Snowbunny
Snowbunny is offline
Post Fiend
Join Date: Mar 2007
Location: The Great North~West!
Posts: 8,770
Likes: 0
Received 8 Likes on 4 Posts
Ha! Ha!! Ha!!! I have never had a Statistics class,,, But I will do whatever I can!!!
 
  #6  
Old 05-05-2008, 10:08 AM
kw5413's Avatar
kw5413
kw5413 is offline
Post Fiend
Join Date: Apr 2004
Location: Great State of Texas
Posts: 19,098
Likes: 0
Received 8 Likes on 8 Posts
I think the down force of the planted foot (while kicking with the other foot) will create a shear effect upon the ice which will in turn cause it to shatter. This structurally weakened ice will then separate, thereby, causing the rod and the kick engineer to spiral downward into the supposed freezing water. This will, in effect, cause both the rod and the kick engineer to be lost forever. Therefore, this experiment is flawed by it's own design and a victim of **** poor planning. Since it is scientifically proved that **** Poor Planning Provides **** Poor Results.....

....I wouldn't do it.


 
  #7  
Old 05-05-2008, 10:11 AM
captain p4's Avatar
captain p4
captain p4 is offline
Post Fiend
Thread Starter
Join Date: Jun 2004
Location: Joppa, Maryland
Posts: 8,147
Likes: 0
Received 1 Like on 1 Post
I would love to copy that as my answer and turn it in


but I need to pass this test
 
  #8  
Old 05-05-2008, 05:28 PM
ckal704's Avatar
ckal704
ckal704 is offline
Postmaster

Join Date: Nov 2004
Location: Lancaster County PA
Posts: 3,549
Likes: 0
Received 2 Likes on 1 Post
Originally Posted by captain p4
I would love to copy that as my answer and turn it in


I double-dog dare ya' !!!!
 
  #9  
Old 05-05-2008, 10:59 PM
FTE Herman's Avatar
FTE Herman
FTE Herman is offline
Post Fiend
Join Date: Jun 2003
Posts: 5,983
Likes: 0
Received 2 Likes on 2 Posts
Snowbunny just graduated to the 'ultra-hot' level in my book. Good looks and elite math skills? Marrying material in my mind.
 
  #10  
Old 05-05-2008, 11:23 PM
captain p4's Avatar
captain p4
captain p4 is offline
Post Fiend
Thread Starter
Join Date: Jun 2004
Location: Joppa, Maryland
Posts: 8,147
Likes: 0
Received 1 Like on 1 Post
Turned the test in, thanks for all the help.. I'll let you know how you did snowbunny
 
  #11  
Old 05-06-2008, 03:04 AM
Jimmy Dean's Avatar
Jimmy Dean
Jimmy Dean is offline
Postmaster
Join Date: Mar 2003
Location: La Tech University, La
Posts: 4,513
Likes: 0
Received 0 Likes on 0 Posts
So, when I have to retake Fluid Dynamics, do I come here for the answers to my problems?
 
  #12  
Old 05-06-2008, 07:23 AM
fred_79f250's Avatar
fred_79f250
fred_79f250 is offline
Posting Guru
Join Date: Jun 2005
Location: Location, Location.
Posts: 1,254
Likes: 0
Received 0 Likes on 0 Posts
Sorry brother, wish I'd paid attention to this before - you were being asked for the center of gravity, not the moment of inertia.

...find its center of rotation...

A free-floating body will rotate about its center of gravity.

The angular velocity it acquires is a function of the force (the kick) applied to it, and the angular equivalent of mass about the axis of rotation, the moment of intertia. But its "center of rotation" will be its center of gravity.
 
  #13  
Old 05-06-2008, 11:33 AM
fmc400's Avatar
fmc400
fmc400 is offline
MSEE
Join Date: Apr 2004
Location: Austin, TX
Posts: 10,386
Likes: 0
Received 22 Likes on 18 Posts
How is that so? The center of gravity would be the middle if the mass of the bar is even throughout. Gravity acts on the entire length of the bar equally and the center of gravity is in the middle. But if it's lying flat on its side and you kick it from one end only, for the center of rotation to be in the middle you'd have to kick it equally in the opposite direction on the opposite side. If you only kick it from one end, wouldn't the center of rotation be closer to the other end? I'm not trying to start an argument but I'm curious.

This is a moments problem; you have to solve it with the integral like SnowBunny showed. I remember that same type of problem from that class. She solved it correctly - if your claim was true then the answer would have been just x = 0 (center) since she integrated from -L/2 to +L/2.
 
  #14  
Old 05-06-2008, 07:18 PM
fred_79f250's Avatar
fred_79f250
fred_79f250 is offline
Posting Guru
Join Date: Jun 2005
Location: Location, Location.
Posts: 1,254
Likes: 0
Received 0 Likes on 0 Posts
...If you only kick it from one end, wouldn't the center of rotation be closer to the other end?...
Go outside and try to find a way to throw a (uniform) stick in the air that causes it to rotate about anything other than it's middle point.

...This is a moments problem; ..... if your claim was true then the answer would have been just x = 0 (center) ...
Well, consider it from a dimensional approach - the question asks

...find its center of rotation...

which implies finding a position. The center of gravity is a position within the object. The Moment of Inertia is a property of the object, measured in units of mass times length squared, like grams-centimeters^2, not a position. Does the phrase "It's center of rotation is 25 grams-cm^2" make sense?

If it turns out a prof has used these words to ask for the moment of inertia, he needs to take a course in engineering communication.
 
  #15  
Old 05-06-2008, 07:24 PM
captain p4's Avatar
captain p4
captain p4 is offline
Post Fiend
Thread Starter
Join Date: Jun 2004
Location: Joppa, Maryland
Posts: 8,147
Likes: 0
Received 1 Like on 1 Post
I kept tossing my pen in the air and flicking one side and it just spun about the center
 


Quick Reply: dynamics



All times are GMT -5. The time now is 12:12 PM.