Notices
1987 - 1996 F150 & Larger F-Series Trucks 1987 - 1996 Ford F-150, F-250, F-350 and larger pickups - including the 1997 heavy-duty F250/F350+ trucks
Sponsored by:
Sponsored by:

Back pressure? with pic

Thread Tools
 
Search this Thread
 
  #16  
Old 12-05-2011, 05:31 PM
waskin27's Avatar
waskin27
waskin27 is offline
Senior User
Thread Starter
Join Date: Dec 2010
Location: michigan
Posts: 183
Likes: 0
Received 0 Likes on 0 Posts
Its fine now? I guess it fixed itself . It probably does need a new fuel filter though, that might of been the problem, and it just pushed through the gunk finally. thanks anyways guys.
 
  #17  
Old 12-05-2011, 07:02 PM
fast_st's Avatar
fast_st
fast_st is offline
Senior User
Join Date: Jun 2004
Location: Northern MA
Posts: 335
Likes: 0
Received 1 Like on 1 Post
Well, my 89's fuel injection system on a 4.9 could not deal with a glasspack, I would get a stumble below 2000 rpm and light throttle, a hesitation and its a manual gearbox. Swapping on the correct muffler immediately eliminated the problem.
r
 
  #18  
Old 12-05-2011, 07:21 PM
kd0axs's Avatar
kd0axs
kd0axs is offline
Cargo Master
Join Date: Jul 2011
Location: Nowthen, MN
Posts: 2,000
Likes: 0
Received 4 Likes on 3 Posts
Here's a good read. I have no idea where is was originally posted, but it's been copied by people on several different forums, and I believe several different people have taken credit for it. It's directed towards Hondas, but it's true for all engines regardless of make.


Backpressure: The myth and why it's wrong.

I. Introduction

One of the most misunderstood concepts in exhaust theory is backpressure. People love to talk about backpressure on message boards with no real understanding of what it is and what it's consequences are. I'm sure many of you have heard or read the phrase "Hondas need backpressure" when discussing exhaust upgrades. That phrase is in fact completely inaccurate and a wholly misguided notion.

II. Some basic exhaust theory

Your exhaust system is designed to evacuate gases from the combustion chamber quickly and efficently. Exhaust gases are not produced in a smooth stream; exhaust gases originate in pulses. A 4 cylinder motor will have 4 distinct pulses per complete engine cycle, a 6 cylinder has 6 pules and so on. The more pulses that are produced, the more continuous the exhaust flow. Backpressure can be loosely defined as the resistance to positive flow - in this case, the resistance to positive flow of the exhaust stream.

III. Backpressure and velocity

Some people operate under the misguided notion that wider pipes are more effective at clearing the combustion chamber than narrower pipes. It's not hard to see how this misconception is appealing - wider pipes have the capability to flow more than narrower pipes. So if they have the ability to flow more, why isn't "wider is better" a good rule of thumb for exhaust upgrading? In a word - VELOCITY. I'm sure that all of you have at one time used a garden hose w/o a spray nozzle on it. If you let the water just run unrestricted out of the house it flows at a rather slow rate. However, if you take your finger and cover part of the opening, the water will flow out at a much much faster rate.

The astute exhaust designer knows that you must balance flow capacity with velocity. You want the exhaust gases to exit the chamber and speed along at the highest velocity possible - you want a FAST exhaust stream. If you have two exhaust pulses of equal volume, one in a 2" pipe and one in a 3" pipe, the pulse in the 2" pipe will be traveling considerably FASTER than the pulse in the 3" pipe. While it is true that the narrower the pipe, the higher the velocity of the exiting gases, you want make sure the pipe is wide enough so that there is as little backpressure as possible while maintaining suitable exhaust gas velocity. Backpressure in it's most extreme form can lead to reversion of the exhaust stream - that is to say the exhaust flows backwards, which is not good. The trick is to have a pipe that that is as narrow as possible while having as close to zero backpressure as possible at the RPM range you want your power band to be located at. Exhaust pipe diameters are best suited to a particular RPM range. A smaller pipe diameter will produce higher exhaust velocities at a lower RPM but create unacceptably high amounts of backpressure at high rpm. Thus if your powerband is located 2-3000 RPM you'd want a narrower pipe than if your powerband is located at 8-9000RPM.

Many engineers try to work around the RPM specific nature of pipe diameters by using setups that are capable of creating a similar effect as a change in pipe diameter on the fly. The most advanced is Ferrari's which consists of two exhaust paths after the header - at low RPM only one path is open to maintain exhaust velocity, but as RPM climbs and exhaust volume increases, the second path is opened to curb backpressure - since there is greater exhaust volume there is no loss in flow velocity. BMW and Nissan use a simpler and less effective method - there is a single exhaust path to the muffler; the muffler has two paths; one path is closed at low RPM but both are open at high RPM.

IV. So how did this myth come to be?

I often wonder how the myth "Hondas need backpressure" came to be. Mostly I believe it is a misunderstanding of what is going on with the exhaust stream as pipe diameters change. For instance, someone with a civic decides he's going to uprade his exhaust with a 3" diameter piping. Once it's installed the owner notices that he seems to have lost a good bit of power throughout the powerband. He makes the connections in the following manner: "My wider exhaust eliminated all backpressure but I lost power, therefore the motor must need some backpressure in order to make power." What he did not realize is that he killed off all his flow velocity by using such a ridiculously wide pipe. It would have been possible for him to achieve close to zero backpressure with a much narrower pipe - in that way he would not have lost all his flow velocity.

V. So why is exhaust velocity so important?

The faster an exhaust pulse moves, the better it can scavenge out all of the spent gasses during valve overlap. The guiding principles of exhaust pulse scavenging are a bit beyond the scope of this doc but the general idea is a fast moving pulse creates a low pressure area behind it. This low pressure area acts as a vacuum and draws along the air behind it. A similar example would be a vehicle traveling at a high rate of speed on a dusty road. There is a low pressure area immediately behind the moving vehicle - dust particles get sucked into this low pressure area causing it to collect on the back of the vehicle. This effect is most noticeable on vans and hatchbacks which tend to create large trailing low pressure areas - giving rise to the numerous "wash me please" messages written in the thickly collected dust on the rear door(s).

VI. Conclusion.

SO it turns out that Hondas don't need backpressure, they need as high a flow velocity as possible with as little backpressure as possible.
 
  #19  
Old 12-05-2011, 07:34 PM
fast_st's Avatar
fast_st
fast_st is offline
Senior User
Join Date: Jun 2004
Location: Northern MA
Posts: 335
Likes: 0
Received 1 Like on 1 Post
Ahh, the Honda must be behind the Rustoleum warrior. The early Ford EFI units were not capible of adjusting for any major changes being a speed density system. Without a mass airflow sensor you could end up throwing the balance out of whack. My 4.9 would fail some emissions tests as its update speed wasn't fast enough to follow the slope of the dyno test. After several complaints by many folks, the dyno checks were eliminated for older engines. At idle, its perfect still on the emissions test
 
  #20  
Old 12-05-2011, 08:48 PM
waskin27's Avatar
waskin27
waskin27 is offline
Senior User
Thread Starter
Join Date: Dec 2010
Location: michigan
Posts: 183
Likes: 0
Received 0 Likes on 0 Posts
FAST_ST: thats exactly how mine was acting to the T...weird
 
  #21  
Old 12-06-2011, 01:23 PM
fast_st's Avatar
fast_st
fast_st is offline
Senior User
Join Date: Jun 2004
Location: Northern MA
Posts: 335
Likes: 0
Received 1 Like on 1 Post
Even with the 'kinda fit' oval muffler it seemed to perform well, eventually I found a local shop that'd sell the 'exact fit' muffler with the correct inlet/outlet, length and hangers with a lifetime warranty. I don't crush the clamps too hard, just tight enough to grip and I'm on my fourth muffler in 11 years. My original receipt is older than all of the employees. But swapping on the glasspack muffler, it'd develop that slight hesitation, not bucking but like it lost fuel for a fraction of a second, a short stumble or stutter and it was repeatable. I can't attest to the flow velocity or back pressure but right in that one spot in rpm at a small throttle range, the math that the computer was doing was incorrect.
 
Related Topics
Thread
Thread Starter
Forum
Replies
Last Post
HD Rider
1999 - 2003 7.3L Power Stroke Diesel
5
03-17-2018 08:44 PM
meborder
Explorer, Sport Trac, Mountaineer & Aviator
3
06-06-2012 06:39 AM
spdmpo
1999 - 2003 7.3L Power Stroke Diesel
7
06-22-2009 03:43 PM
metal83
Exhaust Systems
7
10-03-2008 12:47 PM
Ken aka Savage
Alberta Chapter
1
09-19-2005 06:37 PM



Quick Reply: Back pressure? with pic



All times are GMT -5. The time now is 01:26 AM.